These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The effects of chronic intracochlear electrical stimulation on inferior colliculus spatial representation in adult deafened cats. Author: Moore CM, Vollmer M, Leake PA, Snyder RL, Rebscher SJ. Journal: Hear Res; 2002 Feb; 164(1-2):82-96. PubMed ID: 11950528. Abstract: Previous studies have shown that chronic electrical stimulation through a cochlear implant causes significant alterations in the central auditory system of neonatally deafened cats. The goal of this study was to investigate the effects of chronic stimulation in the mature auditory system. Normal hearing adult animals were deafened by ototoxic drugs and received daily electrical stimulation over periods of 4-6 months. In terminal physiology experiments, response thresholds to pulsatile and sinusoidal signals were recorded within the inferior colliculus (IC). Using previously established methods, spatial tuning curves (STCs; threshold vs. IC depth functions) were constructed, and their widths measured to infer spatial selectivity. The IC spatial representations were similar for pulsatile and sinusoidal stimulation when phase duration was taken into consideration. However, sinusoidal signals consistently elicited much lower thresholds than pulsatile signals, a difference not solely attributable to differences in charge/phase. The average STC width was significantly broader in the adult deafened/stimulated animals than in controls (adult deafened/unstimulated cats), suggesting that electrical stimulation can induce spatial expansion of the IC representation of the chronically stimulated cochlear sector. Further, results in these adult animals were not significantly different from results in neonatally deafened, early stimulated animals, suggesting that a similar degree of plasticity was induced within the auditory midbrains of mature animals.[Abstract] [Full Text] [Related] [New Search]