These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dopamine-induced exocytosis of Na,K-ATPase is dependent on activation of protein kinase C-epsilon and -delta.
    Author: Ridge KM, Dada L, Lecuona E, Bertorello AM, Katz AI, Mochly-Rosen D, Sznajder JI.
    Journal: Mol Biol Cell; 2002 Apr; 13(4):1381-9. PubMed ID: 11950946.
    Abstract:
    The purpose of this study was to define mechanisms by which dopamine (DA) regulates the Na,K-ATPase in alveolar epithelial type 2 (AT2) cells. The Na,K-ATPase activity increased by twofold in cells incubated with either 1 microM DA or a dopaminergic D(1) agonist, fenoldopam, but not with the dopaminergic D(2) agonist quinpirole. The increase in activity paralleled an increase in Na,K-ATPase alpha1 and beta1 protein abundance in the basolateral membrane (BLM) of AT2 cells. This increase in protein abundance was mediated by the exocytosis of Na,K-pumps from late endosomal compartments into the BLM. Down-regulation of diacylglycerol-sensitive types of protein kinase C (PKC) by pretreatment with phorbol 12-myristate 13-acetate or inhibition with bisindolylmaleimide prevented the DA-mediated increase in Na,K-ATPase activity and exocytosis of Na,K-pumps to the BLM. Preincubation of AT2 cells with either 2-[1-(3-dimethylaminopropyl)-5-methoxyindol-3-yl]-3-(1H-indol-3-yl)maleimide (Gö6983), a selective inhibitor of PKC-delta, or isozyme-specific inhibitor peptides for PKC-delta or PKC-epsilon inhibited the DA-mediated increase in Na,K-ATPase. PKC-delta and PKC-epsilon, but not PKC-alpha or -beta, translocated from the cytosol to the membrane fraction after exposure to DA. PKC-delta- and PKC-epsilon-specific peptide agonists increased Na,K-ATPase protein abundance in the BLM. Accordingly, dopamine increased Na,K-ATPase activity in alveolar epithelial cells through the exocytosis of Na,K-pumps from late endosomes into the basolateral membrane in a mechanism-dependent activation of the novel protein kinase C isozymes PKC-delta and PKC-epsilon.
    [Abstract] [Full Text] [Related] [New Search]