These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of protein synthesis in apoptosis: differential requirements by the tumor necrosis factor alpha family and a DNA-damaging agent for caspases and the double-stranded RNA-dependent protein kinase. Author: Jeffrey IW, Bushell M, Tilleray VJ, Morley S, Clemens MJ. Journal: Cancer Res; 2002 Apr 15; 62(8):2272-80. PubMed ID: 11956083. Abstract: Exposure of mammalian cells to agents that induce apoptosis results in a rapid and substantial inhibition of protein synthesis. In MCF-7 breast cancer cells, tumor necrosis factor alpha (TNFalpha) and TNF-related apoptosis-inducing ligand inhibit overall translation by a mechanism that requires caspase (but not necessarily caspase-3) activity. This inhibition is associated with the increased phosphorylation of eukaryotic initiation factor (eIF2) alpha, increased association of eIF4E with the inhibitory eIF4E-binding protein (4E-BP1), and specific cleavages of eIF4B and eIF2alpha. All of these changes require caspase activity. The cleavage of eIF4GI, which specifically needs caspase-3 activity, is dispensable for the inhibition of translation in MCF-7 cells. Similar experiments with embryonic fibroblasts from control mice and animals defective for expression of the double-stranded RNA-regulated protein kinase (PKR) reveal requirements for both caspase activity and PKR for inhibition of protein synthesis in response to TNFalpha. In contrast, treatment of cells with the DNA-damaging agent etoposide inhibits protein synthesis equally well in the presence of a pan-specific caspase inhibitor and in the presence or absence of PKR. Surprisingly, the ability of etoposide to cause increased association of eIF4E with 4E-BP1 does require PKR activity. However, our data suggest that neither increased phosphorylation of eIF2alpha nor increased [eIF4E.4E-BP1] complex formation is essential for the inhibition of overall translation by the DNA-damaging agent.[Abstract] [Full Text] [Related] [New Search]