These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Role of ET-1 receptor binding and [Ca(2+)](i) in contraction of coronary arteries from DOCA-salt hypertensive rats. Author: Giulumian AD, Molero MM, Reddy VB, Pollock JS, Pollock DM, Fuchs LC. Journal: Am J Physiol Heart Circ Physiol; 2002 May; 282(5):H1944-9. PubMed ID: 11959662. Abstract: Hypertension is associated with an increase in coronary artery disease, but little is known about the regulation of coronary vascular tone by endothelin-1 (ET-1) in hypertension. The present study evaluated the mechanisms mediating altered contraction to ET-1 in coronary small arteries from deoxycorticosterone acetate (DOCA)-salt hypertensive rats. DOCA-salt rats exhibited an increase in systolic blood pressure and plasma ET-1 levels compared with placebo rats. Contraction to ET-1 (1 x 10(-11) to 3 x 10(-8) M), measured in isolated coronary small arteries maintained at a constant intraluminal pressure of 40 mmHg, was largely reduced in vessels from DOCA-salt rats compared with placebo rats. To determine the role of endothelin receptor binding in the impaired contraction to ET-1, (125)I-labeled ET-1 receptor binding was measured in membranes isolated from coronary small arteries. Maximum binding (fmol/mg protein) and binding affinity were similar in coronary membranes from DOCA-salt rats compared with placebo rats. Changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) were measured in freshly dissociated coronary small artery smooth muscle cells loaded with fura 2. ET-1 (10(-9) M) produced a 30 +/- 9% increase in [Ca(2+)](i) in smooth muscle cells from placebo rats, but had no effect on cells from DOCA-salt rats (2 +/- 2%). In summary, the ET-1-induced coronary artery contraction and increase in [Ca(2+)](i) are impaired in DOCA-salt hypertensive rats, whereas endothelin receptor binding is not altered. These results suggest endothelin receptor uncoupling from signaling mechanisms and indicate that impaired [Ca(2+)](i) signaling contributes to the decrease in ET-1-induced contraction of coronary small arteries in DOCA-salt hypertensive rats.[Abstract] [Full Text] [Related] [New Search]