These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Analysis of CD20-dependent cellular cytotoxicity by G-CSF-stimulated neutrophils.
    Author: van der Kolk LE, de Haas M, Grillo-López AJ, Baars JW, van Oers MH.
    Journal: Leukemia; 2002 Apr; 16(4):693-9. PubMed ID: 11960351.
    Abstract:
    Rituximab, a chimeric CD20 monoclonal antibody (mAb), is widely used in the treatment of patients with low-grade non-Hodgkin's lymphoma. Possible anti-tumour mechanisms involve complement-mediated lysis and/or antibody-dependent cellular cytotoxicity (ADCC). Because G-CSF greatly enhances the cytotoxicity of neutrophils (PMN) in ADCC, the clinical efficacy of rituximab might be enhanced by the addition of G-CSF. Therefore, we investigated the neutrophil-mediated CD20-dependent cellular cytotoxicity in B cell lines. In contrast to previous studies by others, we found that G-CSF-primed PMN are capable of functioning as effector cells in CD20-dependent cellular cytotoxicity. However, HLA class II mAbs were far more effective. The differences between HLA class II- and CD20-mediated PMN-ADCC were not due to: (1) the use of chimeric (hIgG1) mAbs vs mIgG2a mAbs; (2) HLA class II-induced apoptosis as an 'ADCC-sensitising' mechanism; (3) CD20-induced inhibition of ADCC; (4) inferior membrane mobility of CD20. Analysis of Fcgammareceptor (FcgammaR) involvement showed that although CD20-induced ADCC was mediated mainly via FcgammaRI, for optimal lysis FcgammaRI and FcgammaRII were both required. In contrast, in HLA class II-dependent ADCC both FcgammaRI and II were capable of independently inducing maximum lysis. The mechanism underlying these differences in FcgammaR-binding and activation remains to be elucidated.
    [Abstract] [Full Text] [Related] [New Search]