These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Prourokinase mutant that induces highly effective clot lysis without interfering with hemostasis. Author: Liu JN, Liu JX, Liu Bf BF, Sun Z, Zuo JL, Zhang Px PX, Zhang J, Chen Yh YH, Gurewich V. Journal: Circ Res; 2002 Apr 19; 90(7):757-63. PubMed ID: 11964367. Abstract: Prourokinase (proUK) is a zymogenic plasminogen activator that at pharmacological doses is prone to nonspecific activation to urokinase. This has handicapped therapeutic exploitation of its fibrin-specific physiological properties. To attenuate this susceptibility without compromising specific activation of proUK on a fibrin clot, a Lys300-->His mutation (M5) was developed. M5 had a lower intrinsic activity and, therefore, remained stable in plasma at a 4-fold higher concentration than did proUK. M5 had a higher 2-chain activity and induced more rapid plasminogen activation and fibrin-specific clot lysis in vitro. Sixteen dogs embolized with radiolabeled clots were infused with saline, proUK, tissue plasminogen activator, or M5. The lower intrinsic activity allowed a higher infusion rate with M5, which induced the most rapid and efficient clot lysis (50% clot lysis by approximately 600 microg/kg M5 versus approximately 1200 microg/kg proUK). In association with this, M5 caused neither a significant increase in the primary bleeding time nor secondary bleeding (total blood loss). By contrast, these measurements increased 4-fold and 5-fold, respectively, with proUK and >5-fold and 8-fold, respectively, with tissue plasminogen activator. Clot lysis by M5 and hemostasis were further evaluated in 6 rhesus monkeys. M5 again induced rapid clot lysis without a significant increase in the primary bleeding time, and secondary bleeding did not occur. In conclusion, a site-directed mutation designed to improve the stability of proUK in blood at therapeutic concentrations induced superior clot lysis in vitro and in vivo without causing significant interference with hemostasis.[Abstract] [Full Text] [Related] [New Search]