These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Selective synaptic actions of thiopental and its enantiomers. Author: Dickinson R, de Sousa SL, Lieb WR, Franks NP. Journal: Anesthesiology; 2002 Apr; 96(4):884-92. PubMed ID: 11964596. Abstract: BACKGROUND: There is conflicting evidence concerning the extent to which the intravenous general anesthetic thiopental acts by enhancing inhibitory gamma-aminobutyric acid-mediated (GABAergic) synaptic transmission or by inhibiting excitatory glutamatergic transmission. Yet there are remarkably few studies on the effects of thiopental on functional synapses. In addition, the degree of stereoselectivity of thiopental acting at synapses has yet to be tested. METHODS: The actions of thiopental and its enantiomers on GABAergic and glutamatergic synapses were investigated using voltage clamp techniques on microisland cultures of rat hippocampal neurons, a preparation that avoids the confounding effects of complex neuronal networks. RESULTS: Racemic thiopental markedly enhanced the charge transfer at GABAergic synapses without significantly affecting the peak of the postsynaptic current. At a surgically relevant concentration (25 microm), charge transfer was increased by approximately 230%. However, even at twice this concentration there were no significant effects on glutamatergic postsynaptic currents. At GABAergic synapses, thiopental acted stereoselectively, with the S(-) enantiomer being approximately twice as effective as the R(+) enantiomer at enhancing charge transfer. CONCLUSIONS: Thiopental stereoselectively enhances inhibitory GABAergic synaptic transmission in a way that reflects animal potencies, supporting the idea that this is a principal mode of action for this drug. The absence of any effect on glutamatergic synapses at surgically relevant concentrations suggests that the inhibition of these excitatory synapses is not an important factor in producing thiopental general anesthesia.[Abstract] [Full Text] [Related] [New Search]