These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In vitro control of growth and fumonisin production by Fusarium verticillioides and F. proliferatum using antioxidants under different water availability and temperature regimes.
    Author: Etcheverry M, Torres A, Ramirez ML, Chulze S, Magan N.
    Journal: J Appl Microbiol; 2002; 92(4):624-32. PubMed ID: 11966902.
    Abstract:
    AIMS: To examine the effect of butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), trihydroxybutyrophenone and propylparaben (PP) (at concentrations of 1-20 mmol l(-1)) on growth of and fumonisin production by Argentinian strains of Fusarium verticillioides and F. proliferatum. METHODS AND RESULTS: Studies on lag phases prior to growth, relative growth rates and fumonisin concentrations were carried out in vitro in relation to water activity (0.995-0.93 a(w)) and temperature (18 and 25 degrees C) on a maize meal agar. Overall, PP was the antioxidant which was most effective at inhibiting strains of both species. The lag phase prior to growth and growth rates were significantly decreased by PP and BHA at 10 and 20 mmol l(-1), regardless of the temperature or aw level tested. Total fumonisin production was higher at 0.98 a(w) and decreased by about 45-50% at 0.995 and 0.95 a(w). Overall, BHT only inhibited fumonisin production at 0.95 aw at 10 and 20 mmol l(-1), while BHA was effective at most a(w) levels tested at 10 and 20 mmol l(-1). Propylparaben completely inhibited fumonisin production by both F. verticillioides and F. proliferatum at > 1 mmol l(-1), regardless of the temperature or a(w) level. Small interstrain differences in the levels of inhibition by the antioxidants were observed for three F. verticillioides and four F. proliferatum strains at 0.995, 0.98 and 0.95 a(w). Propylparaben and BHA completely inhibited the growth of both species at the concentrations evaluated, regardless of the a(w) level. CONCLUSIONS: Two antioxidants show promise for the control of growth of and fumonisin production by these species over a wide range of environmental conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: Potential exists for using such food-grade preservatives for prevention of mycotoxigenic fungi and their toxins entering the food chain.
    [Abstract] [Full Text] [Related] [New Search]