These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cytokines and neurotrophic factors fail to affect Nogo-A mRNA expression in differentiated human neurones: implications for inflammation-related axonal regeneration in the central nervous system.
    Author: Satoh JI, Kuroda Y.
    Journal: Neuropathol Appl Neurobiol; 2002 Apr; 28(2):95-106. PubMed ID: 11972796.
    Abstract:
    Nogo is a novel myelin-associated inhibitor of neurite outgrowth which regulates stable neuronal connections during axonal regeneration following injury in the adult mammalian central nervous system (CNS). Because cytokines and neurotrophic factors play a key role in inflammation-related axonal regeneration, we investigated: (i) the constitutive expression of Nogo and the Nogo receptor (NgR) mRNA in human neural cell lines; (ii) Nogo and NgR mRNA levels in the NTera2 human teratocarcinoma cell line during retinoic acid (RA)-induced neuronal differentiation; and (iii) their regulation in NTera2-derived differentiated neurones (NTera2-N) after exposure to a battery of cytokines and growth factors potentially produced by activated glial cells at post-traumatic inflammatory lesions in the CNS. By reverse transcriptase-polymerase chain reaction analysis, the constitutive expression of Nogo-A, the longest isoform of three distinct Nogo transcripts and NgR mRNA was identified in a wide variety of human neural and non-neural cell lines. By Northern blot analysis, the levels of Nogo-A mRNA were elevated markedly in NTera2 cells following RA-induced neuronal differentiation, accompanied by an increased expression of the neurite growth-associated protein GAP-43 mRNA. In contrast, Nogo-A, Nogo-B, NgR and GAP-43 mRNA levels were unaltered in NTera2-N cells by exposure to basic fibroblast growth factor, brain-derived neurotrophic factor, glia-derived neurotrophic factor, tumour necrosis factor-alpha, interleukin-1beta, dibutyryl cyclic AMP or phorbol 12-myristate 13-acetate. These results indicate that both Nogo-A and NgR mRNA are coexpressed in various human cell types, including differentiated neurones, where their expression is unaffected by exposure to a panel of cytokines and neurotrophic factors which might be involved in inflammation-related axonal regeneration in the CNS.
    [Abstract] [Full Text] [Related] [New Search]