These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: ATP-dependent 6-phosphofructokinase from the hyperthermophilic bacterium Thermotoga maritima: characterization of an extremely thermophilic, allosterically regulated enzyme. Author: Hansen T, Musfeldt M, Schönheit P. Journal: Arch Microbiol; 2002 May; 177(5):401-9. PubMed ID: 11976749. Abstract: The ATP-dependent 6-phosphofructokinase (ATP-PFK) of the hyperthermophilic bacterium Thermotoga maritimawas purified 730-fold to homogeneity. The enzyme is a 140-kDa homotetramer composed of 34 kDa subunits. Kinetic constants were determined for all substrates in both reaction directions at pH 7 and at 75 degrees C. Rate dependence (forward reaction) on fructose 6-phosphate (F-6-P) showed sigmoidal kinetics with a half-maximal saturation constant ( S(0.5)) of 0.7 mM and a Hill coefficient of 2.2. The apparent K(m) for ATP was 0.2 mM and the apparent V(max) value was about 360 U/mg. The enzyme also catalyzed in vitro the reverse reaction with an apparent K(m) for fructose 1,6-bisphosphate and ADP of 7.6 mM and 1.4 mM, respectively, and an apparent V(max) of about 13 U/mg. Divalent cations were required for maximal activity; Mg(2+), which was most effective, could partially be replaced by Mn(2+) and Fe(2+). Enzyme activity was allosterically regulated by classical effectors of ATP-PFKs of Eukarya and Bacteria; it was activated by ADP and inhibited by PEP. The enzyme had a temperature optimum of 93 degrees C and showed a significant thermostability up to 100 degrees C. Using the N-terminal amino acid sequence of the subunit, the pfk gene coding for ATP-PFK was identified and functionally overexpressed in Escherichia coli. The purified recombinant ATP-PFK had identical kinetic and allosteric properties as the native enzyme purified from T. maritima. The deduced amino acid sequence showed high sequence similarity to members of the PFK-A family. In accordance with its allosteric properties, ATP-PFK of T. maritima contained the conserved allosteric effector-binding sites for ADP and PEP.[Abstract] [Full Text] [Related] [New Search]