These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Lysosome-associated protein transmembrane 4 alpha (LAPTM4 alpha) requires two tandemly arranged tyrosine-based signals for sorting to lysosomes. Author: Hogue DL, Nash C, Ling V, Hobman TC. Journal: Biochem J; 2002 Aug 01; 365(Pt 3):721-30. PubMed ID: 11980562. Abstract: Lysosome-associated protein transmembrane 4 alpha (LAPTM4 alpha) and homologues comprise a family of conserved proteins, which are found in mammals, insects and nematodes. LAPTM4 alpha functions to regulate the intracellular compartmentalization of amphipathic solutes and possibly the sensitivity of cells toward anthracyclines, antibiotics, ionophores, nucleobases and organic cations. This is similar to the multidrug-resistance phenotype exhibited by cells synthesizing high levels of P-glycoprotein. Accordingly, it is possible that LAPTM4 alpha may be a suitable target for development of novel chemotherapeutic agents. LAPTM4 alpha contains four putative membrane-spanning domains and a 55 amino acid C-terminal region that faces the cytoplasm. Localization of LAPTM4 alpha to endosomes and lysosomes appears to be tightly controlled as transient high-level expression of LAPTM4 alpha in cultured cells resulted in no detectable protein on the cell surface. Mutagenic analysis of the C-terminus of LAPTM4 alpha indicated that two tandomly arranged tyrosine-containing motifs in the cytoplasmic domain are required for efficient localization of LAPTM4 alpha to vesicles containing the lysosomal marker lysosomal glycoprotein 120. Although a number of membrane proteins that localize to endosomes/lysosomes contain more than one independently functioning sorting signal, to our knowledge, LAPTM4 alpha is the first example of a membrane protein that requires two tandemly arranged tyrosine-based sorting signals for efficient localization in these compartments.[Abstract] [Full Text] [Related] [New Search]