These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Amelioration of myocardial global ischemia/reperfusion injury with volume-regulatory chloride channel inhibitors in vivo.
    Author: Mizoguchi K, Maeta H, Yamamoto A, Oe M, Kosaka H.
    Journal: Transplantation; 2002 Apr 27; 73(8):1185-93. PubMed ID: 11981408.
    Abstract:
    BACKGROUND: Recently, the apoptotic volume decrease was suggested to be regulated by volume regulatory Cl- channels in cultured cell lines. We thus examined whether inhibition of volume-regulatory Cl- channels is cardioprotective, like caspase inhibition, by hindering the apoptosis of cardiomyocytes induced by global ischemia/reperfusion (I/R) in vivo. METHODS: We performed global ischemia for 8 min at 37 degrees C or 4 degrees C in isolated rat hearts, followed by 24-hr reperfusion via heterotopic heart transplantation. The heart tissue was examined by means of the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) method, genomic DNA electrophoresis, and caspase-3 activity. Two blockers of volume-regulatory Cl- channels, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) and 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB), and a broad-spectrum caspase inhibitor, benzoyloxycarbonyl-Asp-CH2OC(O)-2,6-dichlorobenzene (Z-Asp-DCB), were administered intravenously. Triphenyltetrazolium chloride (TTC) staining and ultrasound cardiography were performed to examine myocardial viability. The TTC-unstained region was assessed by means of horseradish peroxidase (HRP) infiltration and the TUNEL method. RESULTS: The transplanted hearts showed TUNEL-positivity and DNA laddering with a peak at 24 hr during reperfusion after ischemia at 37 degrees C, but not at 4 degrees C. NPPB and DIDS were as potent as Z-Asp-DCB for recovery of cardiac function and for blocking the appearance of TUNEL-positivity, DNA laddering, caspase 3 activity, and a TTC-unstained area. TTC-unstained areas were composed of either TUNEL- and slightly HRP-positive or TUNEL-negative and strongly HRP-positive cardiomyocytes. CONCLUSION: The present results demonstrated that myocardial DNA fragmentation, caspase activation, and loss of cardiac function after global I/R were blocked by NPPB and DIDS, similar to in the case of Z-Asp-DCB. These results suggest that inhibition of volume-regulatory Cl- channels is also effective for preventing cardiac I/R injury.
    [Abstract] [Full Text] [Related] [New Search]