These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of K(ATP) channel openers, P-1075, pinacidil, and diazoxide, on energetics and contractile function in isolated rat hearts. Author: Jilkina O, Kuzio B, Grover GJ, Kupriyanov VV. Journal: J Mol Cell Cardiol; 2002 Apr; 34(4):427-40. PubMed ID: 11991732. Abstract: We investigated the metabolic effects of a potent opener of ATP-sensitive K(+) (K(ATP)) channels, P-1075, in perfused rat hearts with the help of(31)P NMR spectroscopy. A 20 min infusion of 5 microm P-1075 depleted phosphocreatine and ATP by approximately 40%, concomitantly with a two-fold increase in inorganic phosphate, while oxygen consumption by the hearts increased by 50%. P-1075 induced a cardiac contracture (left ventricular end diastolic pressure increased from 6 to 60 mmHg) and a cardiac arrest after an infusion of approximately 9 min. The effects were fully reversed by glibenclamide (5 microm), but not by sodium 5-hydroxydecanoate (0.4 m m). A P-1075-related K(ATP) opener, pinacidil (0.3 m m), partially reversed the effects of P-1075, but a structurally unrelated opener, diazoxide (0.5 m m), had no effect. Pinacidil and diazoxide alone did not significantly affect PCr and ATP levels. Bioenergetic and functional effects similar to those of P-1075 were induced by infusion of a classic mitochondrial uncoupler, 2,4-dinitrophenol (50 microm); however, they were not abolished by glibenclamide. In addition, it was shown, using(87)Rb NMR, that both agents, P-1075 and 2,4-dinitrophenol, resulted in a stimulation of Rb(+) efflux from the Rb(+) loaded rat hearts by approximately 130 and 65%, respectively, in a glibenclamide-sensitive manner. An inhibitory effect of P-1075 on ATP synthesis cannot be explained by its well-known action on sarcolemmal K(ATP) channels. We concluded that, unlike an uncoupling effect of 2,4-dinitrophenol, an inhibitory effect of P-1075 is produced by uncoupling of oxidative phosphorylation through the activation of mitochondrial K(ATP) channels.[Abstract] [Full Text] [Related] [New Search]