These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Uptake of (3)H-1-methyl-4-phenylpyridinium ((3)H-MPP(+)) by human intestinal Caco-2 cells is regulated by phosphorylation/dephosphorylation mechanisms. Author: Martel F, Keating E, Calhau C, Azevedo I. Journal: Biochem Pharmacol; 2002 Apr 15; 63(8):1565-73. PubMed ID: 11996899. Abstract: Several transmembrane transporters of organic compounds are regulated by phosphorylation/dephosphorylation mechanisms. The aim of this study was to investigate the possible regulation of the intestinal uptake of organic cations by these mechanisms. The intestinal apical uptake of 1-methyl-4-phenylpyridinium (MPP(+)) was studied by incubating Caco-2 cells at 37 degrees for 5 min with 200 nM (3)H-MPP(+). Uptake of (3)H-MPP(+) by Caco-2 cells was not affected by activators of protein kinase G, and was not affected or slightly reduced (by 15-20%) by activators of protein kinase A or protein kinase C. Uptake of (3)H-MPP(+) by Caco-2 cells was reduced in a concentration-dependent manner by non-selective phosphodiesterase inhibitors (3-isobutyl-1-methylxanthine (IBMX), caffeine, teophylline). The IC(50) of IBMX was found to be 119 microM (102-138; n=9). Uptake of (3)H-MPP(+) by Caco-2 cells was not affected by inhibition of protein tyrosine kinase, but it was concentration-dependently reduced in the presence of inhibitors of mitogen-activated protein kinase. Uptake of (3)H-MPP(+) by Caco-2 cells was strongly reduced by Ca(2+)/calmodulin-mediated pathway inhibitors, but it was not dependent on extracellular Ca(2+). Our results suggest that the intestinal apical uptake of MPP(+) is regulated by phosphorylation/dephosphorylation mechanisms, being most probably active in the dephosphorylated state. Moreover, uptake of (3)H-MPP(+) by Caco-2 cells and by the extraneuronal monoamine transporter (EMT) are regulated in a very similar manner, suggesting an important participation of EMT in the intestinal uptake of this compound.[Abstract] [Full Text] [Related] [New Search]