These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A novel type of uracil-DNA glycosylase mediating repair of hydrolytic DNA damage in the extremely thermophilic eubacterium Thermus thermophilus.
    Author: Starkuviene V, Fritz HJ.
    Journal: Nucleic Acids Res; 2002 May 15; 30(10):2097-102. PubMed ID: 12000829.
    Abstract:
    Spontaneous hydrolytic deamination of DNA cytosine and 5-methyl-cytosine residues is an abundant source of C/G (5-meC/G) to T/A transition mutations. As a result of this pressure, at least six different families of enzymes have evolved that initiate repair at U/G (T/G) mispairs, the relevant pre-mutagenic intermediates. The necessarily higher rate of the process at elevated temperatures must pose a correspondingly accentuated problem to contemporary thermophilic organisms and may have been a serious bottleneck in early evolution when life passed through a phase of very high ambient temperatures. Here we show that Thermus thermophilus, an aerobic, Gram-negative eubacterium thriving at up to 85 degrees C, harbors two uracil-DNA glycosylases (UDGs), termed TTUDGA and TTUDGB. According to both amino acid sequence and enzymatic properties, TTUDGA clearly belongs to the family of 'thermostable UDGs'. TTUDGB shares with TTUDGA 23% sequence identity, but differs from it in profound functional aspects. TTUDGB, unlike TTUDGA, does not act upon uracil residues in the context of single-stranded DNA whereas both enzymes process various double-stranded substrates, albeit with different preferences. TTUDGB shows a number of sequence features characteristic of the UDG superfamily, but surprisingly lacks any polar residue within its so-called motif 1 (GLAPG-X(10)-F). This finding is in conflict with a previously assumed crucial catalytic role of motif 1 in water activation and supports a more recently suggested alternative of a dissociative ('S(N)1-type') reaction mechanism. Together, the characteristics of TTUDGB and its homologs in other organisms define a novel family of UDG repair enzymes.
    [Abstract] [Full Text] [Related] [New Search]