These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In vitro degradation and fracture toughness of multilayered porous poly(propylene fumarate)/beta-tricalcium phosphate scaffolds.
    Author: Wolfe MS, Dean D, Chen JE, Fisher JP, Han S, Rimnac CM, Mikos AG.
    Journal: J Biomed Mater Res; 2002 Jul; 61(1):159-64. PubMed ID: 12001259.
    Abstract:
    This study investigated the in vitro degradation of poly(propylene fumarate)/beta-tricalcium phosphate (PPF/beta-TCP) scaffolds in pH 7.4 phosphate-buffered saline at 37 degrees C. Scaffold design consisted of three layers: two solid layers about a central layer of porous PPF foam. Solid PPF with molecular weights of 810 and 1450 Da was crosslinked under UV light. PPF foam was prepared by a photocrosslinking, porogen-leaching method with an initial porogen content of 80 wt % and two sizes, 150-300 and 300-500 microm. Comparison of initial and residual weights demonstrated a 14.3 +/- 2.0% loss of mass at 3 weeks and a 16.6 +/- 1.8% loss of mass at 6 weeks. Observed pH values for all constructs remained stable (7.15-7.40) throughout the 3 to 6 weeks. Scanning electron micrographs of these scaffolds revealed some loss of foam material between 3 and 6 weeks; however, foam microarchitecture was intact. Solid PPF fracture toughness was tested for high and low molecular weight PPF, 0.376 +/- 0.004 and 0.134 +/- 0.015 MPa(m)1/2, respectively. These values are roughly one magnitude less than human cortical bone.
    [Abstract] [Full Text] [Related] [New Search]