These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mössbauer study of the three-coordinate planar Fe(II) thiolate complex [Fe(SR)(3)](-) (R = C(6)H(2)-2,4,6-tBu(3)): model for the trigonal iron sites of the MoFe(7)S(9):homocitrate cofactor of nitrogenase.
    Author: Sanakis Y, Power PP, Stubna A, Münck E.
    Journal: Inorg Chem; 2002 May 20; 41(10):2690-6. PubMed ID: 12005493.
    Abstract:
    The cofactor (M-center) of the MoFe protein of nitrogenase, a MoFe(7)S(9):homocitrate cluster, contains six Fe sites with a (distorted) trigonal sulfido coordination. These sites exhibit unusually small quadrupole splittings, Delta E(Q) approximately 0.7 mm/s, and isomer shifts, delta approximately 0.41 mm/s. Mössbauer and ENDOR studies have provided the magnetic hyperfine tensors of all iron sites in the S = 3/2 state M(N). To assess the intrinsic zero-field splittings and hyperfine parameters of the cofactor sites, we have studied with Mössbauer spectroscopy two salts of the three-coordinated Fe(II) thiolate complex [Fe(SR)(3)](-) (R = C(6)H(2)-2,4,6-tBu(3)). One of the salts, [Ph(4)P][Fe(SR)(3)] x 2MeCN x C(7)H(8), 1, has a planar geometry with idealized C(3h) symmetry. This S = 2 complex has an axial zero-field splitting with D = +10.2 cm(-1). The magnetic hyperfine tensor components A(x) = A(y) = -7.5 MHz and A(z) = -29.5 MHz reflect an orbital ground state with d(z(2)) symmetry. A(iso) = (A(x) +A(y) +A(z))/3 = -14.9 MHz, which includes the contact interaction (kappa P = -21.9 MHz) and an orbital contribution (+7 MHz), which is substantially smaller than A(iso) approximately -22 MHz of the tetrahedral Fe(II)(S-R)(4) sites of both rubredoxin and [PPh(4)](2)[Fe(II)(SPh)(4)]. The largest component of the electric field gradient (EFG) tensor is negative, as expected for a d(z(2)) orbital. However, Delta E(Q) = -0.83 mm/s, which is smaller than expected for a high-spin ferrous site. This reduction can be attributed to a ligand contribution, which in planar complexes provides a large positive EFG component perpendicular to the ligand plane. The isomer shift of 1, delta = 0.56 mm/s, approaches the delta-values reported for the six trigonal cofactor sites. The parameters of 1 and their importance for the cofactor cluster of nitrogenase are discussed.
    [Abstract] [Full Text] [Related] [New Search]