These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Selective delivery of nitric oxide to a cellular target: a pseudosubstrate-coupled dinitrosyl-iron complex inhibits the enteroviral protease 2A.
    Author: Badorff C, Fichtlscherer B, Muelsch A, Zeiher AM, Dimmeler S.
    Journal: Nitric Oxide; 2002 May; 6(3):305-12. PubMed ID: 12009848.
    Abstract:
    Nitric oxide (NO) regulates multiple biological processes. To use NO as a potential therapeutic substance, a more selective modulation of individual NO targets is desirable. Here, we tested whether peptide conjugation of the dinitrosyl-iron complex (DNIC), a potent NO donor, confers targeted NO delivery. As target, we used the protease 2A of Coxsackie-B-viruses (2A(pro)), which can cause dilated cardiomyopathy. Through S-nitrosylation, NO inhibits this protease, which is essential for viral replication. The tetrapeptide Leu-Ser-Thr-Cys (LSTC) (based on the 2A(pro) substrate recognition motif) and DNIC generated LSTC-DNIC in vitro by S-nitrosylation as evidenced by reverse-phase chromatography. In vitro, LSTC-DNIC (IC(50) 510 nM) dose-dependently inhibited purified 2A(pro) 4.7-fold more effectively than DNIC (IC(50) 2.4 microM), whereas LSTC alone had no effect. In intact cells, expression of Coxsackievirus protease 2A by transient transfection led to eIF4G-I-cleavage. LSTC-DNIC (IC(50) 23 microM) dose-dependently inhibited eIF4G cleavage in 2A(pro)-transfected cells 3.8-fold more effectively than DNIC (IC(50) 88 microM). To test the specificity of the DNIC-conjugated LSTC peptide part, we investigated its influence on Caspase-3, a known target for S-nitrosylation. LSTC-DNIC and DNIC inhibited purified Caspase-3 in vitro (IC(50) 3.7 microM) and in intact cells similarly. LSTC conjugation of DNIC enhances its fidelity for inhibition of 2A(pro) in vitro and intracellularly. Peptide-DNIC may be useful to selectively modulate cellular processes by NO, i.e., to enhance its antiviral properties.
    [Abstract] [Full Text] [Related] [New Search]