These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A thermostable L-aminoacylase from Thermococcus litoralis: cloning, overexpression, characterization, and applications in biotransformations.
    Author: Toogood HS, Hollingsworth EJ, Brown RC, Taylor IN, Taylor SJ, McCague R, Littlechild JA.
    Journal: Extremophiles; 2002 Apr; 6(2):111-22. PubMed ID: 12013431.
    Abstract:
    A thermostable L-aminoacylase from Thermococcus litoralis was cloned, sequenced, and overexpressed in Escherichia coli. The enzyme is a homotetramer of 43 kDa monomers and has an 82% sequence identity to an aminoacylase from Pyrococcus horikoshii and 45% sequence identity to a carboxypeptidase from Sulfolobus solfataricus. It contains one cysteine residue that is highly conserved among aminoacylases. Cell-free extracts of the recombinant enzyme were characterized and were found to have optimal activity at 85 degrees C in Tris-HCl at pH 8.0. The recombinant enzyme is thermostable, with a half-life of 25 h at 70 degrees C. Aminoacylase inhibitors, such as mono-tert-butyl malonate, had only a slight effect on activity. The enzyme was partially inhibited by EDTA and p-hydroxymercuribenzoate, suggesting that the cysteine residue and a metal ion are important, but not essential, for activity. Addition of Zn2+ and Co2+ to the apoenzyme increased the enzyme activity, whereas Sn4+ and Cu2+ almost completely abolished enzyme activity. The enzyme was most specific for substrates containing N-benzoyl- or N-chloroacetyl-amino acids. preferring substrates containing hydrophobic, uncharged, or weakly charged amino acids such as phenylalanine, methionine, and cysteine.
    [Abstract] [Full Text] [Related] [New Search]