These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Laser flaremetric evaluation of experimentally induced blood-aqueous barrier disruption in cats.
    Author: Rankin AJ, Krohne SG, Glickman NW, Glickman LT, Stiles J.
    Journal: Am J Vet Res; 2002 May; 63(5):750-6. PubMed ID: 12013479.
    Abstract:
    OBJECTIVES: To determine whether aqueous humor flare, measured by use of laser flaremetry, was proportional to aqueous humor protein concentration and to use laser flaremetry to evaluate disruption of the blood-aqueous barrier (BAB) in cats. ANIMALS: 30 healthy adult cats. PROCEDURE: Laser flaremetry values for all eyes were compared with aqueous humor protein concentrations determined by use of a Coomassie blue microprotein assay. Laser flaremetry was then performed on both eyes before (0 hours) and 4, 8, and 26 hours after initiation of topical application of 2% pilocarpine (q 8 h) to 1 eye of 9 cats or paracentesis of the anterior chamber of 1 eye of 8 cats. Intraocular pressure and pupil size were also determined. Aqueous humor protein concentration was extrapolated from flare values by use of linear regression. RESULTS: There was a linear relationship between flare values and aqueous humor protein concentrations. Topical application of 2% pilocarpine and paracentesis of the anterior chamber caused a breakdown of the BAB that was detected by use of laser flaremetry. The highest mean flare readings after application of pilocarpine or paracentesis were 24.4 and 132.8 pc/ms, respectively, which corresponded to aqueous humor protein concentrations of 85.5 and 434.9 mg/dl, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Paracentesis of the anterior chamber resulted in a more severe breakdown of the BAB in cats than topical application of 2% pilocarpine. Laser flaremetry may be a useful clinical method to detect increases in aqueous flare and, hence, disruptions of the BAB in cats.
    [Abstract] [Full Text] [Related] [New Search]