These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nicotinamide prevents N-methyl-N-nitrosourea-induced photoreceptor cell apoptosis in Sprague-Dawley rats and C57BL mice.
    Author: Kiuchi K, Yoshizawa K, Shikata N, Matsumura M, Tsubura A.
    Journal: Exp Eye Res; 2002 Mar; 74(3):383-92. PubMed ID: 12014919.
    Abstract:
    In previous studies, it was found that a single systemic administration of N-methyl-N-nitrosourea (MNU) to rats and mice resulted in the retinal degeneration in all treated animals over a 7 day period. Retinal degeneration was due to photoreceptor cell apoptosis that was identical to the apoptosis seen in human retinitis pigmentosa (RP). In the present study, nicotinamide (NAM), a water-soluble B-group vitamin (vitamin B(3)), suppressed photoreceptor cell loss in a dose-dependent manner when administered immediately after MNU treatment. In rats, a dose of NAM >or=25 mg kg(-1) completely suppressed photoreceptor cell loss, and 10 mg kg(-1) partially suppressed photoreceptor cell loss. In mice, doses of 1000 and >or=100 mg kg(-1) were needed for complete and partial suppression, respectively. Thus, rats were more responsive to NAM than mice. The retinoprotective effect of 1000 mg kg(-1) NAM lasted throughout the long-term (35 days) observation period, with no apparent toxicity. Also, in rats, 1000 mg kg(-1) NAM completely suppressed photoreceptor cell loss when administered up to 4 hr after MNU treatment, and partially suppressed photoreceptor cell loss when administered 6 hr after MNU treatment. In mice, administration of NAM 2-6 hr after MNU resulted in partial suppression. NAM did not reduce levels of 7-methyldeoxyguanosine DNA adduct, but did reduce photoreceptor cell apoptosis. Although the mechanism of action underlying this retinoprotection remains to be clarified, NAM may be a potential therapeutic agent for the treatment of retinal degeneration.
    [Abstract] [Full Text] [Related] [New Search]