These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In vivo whole body and appendicular bone mineral density in rats: a dual energy X-ray absorptiometry study.
    Author: Karahan S, Kincaid SA, Lauten SD, Wright JC.
    Journal: Comp Med; 2002 Apr; 52(2):143-51. PubMed ID: 12022394.
    Abstract:
    Bone mineral density (BMD) of the whole body and hind limb of young adult rats, with and without a sham-operated stifle joint was studied, using dual energy x-ray absorptiometry (DEXA) at three time points. Data from the whole body scan were used for analyses of BMD, bone mineral content (BMC), fat, lean, body weight (BW), percentage of BMC (%BMC), percentage of fat (%fat), and percentage of lean (%lean), none of which were significantly different between the groups at any time point. Significant (P < 0.05) differences in BMD, BMC, %BMC, BW, fat, %fat, and %lean were apparent at the second and third scans, compared with the initial scan, within both groups. Changes in whole body BMD, BMC, and %BMC as well as BW were highly correlated with time in both groups. In the hind limb scans, regions of interest (ROIs) were created to obtain values of BMD and BMC from the whole femur, whole tibia including the fibula, distal portion of the femur, and proximal portion of the tibia. Significant differences were not found between the groups for any ROIs. However, significant BMD and BMC increases were evident in all ROIs at the second and third scans, compared with the initial scan. Similar to those in the whole body scan, BMD and BMC obtained from ROIs were highly correlated with time. The positioning technique for the whole body and appendicular scans was analyzed by calculating percentage of the coefficient of variation (%CV) at the beginning of the study. The %CV was low and acceptable in ROIs for the hind limb and for all parameters of the whole body scan, except fat. The results suggest that in vivo DEXA scanning of the rat whole body and appendicular skeleton is highly reproducible and useful to study the whole skeleton, as well as a region of a long bone of the rat. Values for the sham-operated rats were not significantly different from those for the untreated controls, which suggests that soft tissue damage around the stifle joint did not alter BMD in the subchondral bone of the distal portion of the femur and proximal portion of the tibia.
    [Abstract] [Full Text] [Related] [New Search]