These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Computation and visualization of three-dimensional soft tissue motion in the orbit. Author: Abràmoff MD, Viergever MA. Journal: IEEE Trans Med Imaging; 2002 Apr; 21(4):296-304. PubMed ID: 12022618. Abstract: This work presents a method to measure the soft tissue motion in three dimensions in the orbit during gaze. It has been shown that two-dimensional (2-D) quantification of soft tissue motion in the orbit is effective in the study of orbital anatomy and motion disorders. However, soft tissue motion is a three-dimensional (3-D) phenomenon and part of the kinematics is lost in any 2-D measurement. Therefore, T1-weighted magnetic resonance (MR) imaging volume sequences are acquired during gaze and soft tissue motion is quantified using a generalization of the Lucas and Kanade optical flow algorithm to three dimensions. New techniques have been developed for visualizing the 3-D flow field as a series of color-texture mapped 2-D slices or as a combination of volume rendering for display of the anatomy and scintillation rendering for the display of the motion field. We have studied the performance of the algorithm on four-dimensional volume sequences of synthetic motion, simulated motion of a static object imaged by MR, an MR-imaged rotating object and MR-imaged motion in the human orbit during gaze. The accuracy of the analysis is sufficient to characterize motion in the orbit and scintillation rendering is an effective visualization technique for 3-D motion in the orbit.[Abstract] [Full Text] [Related] [New Search]