These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tumor necrosis factor-alpha impairs endothelium-dependent relaxation of rat renal arteries, independent of tyrosine kinase.
    Author: Piepot HA, Groeneveld AB, van Lambalgen AA, Sipkema P.
    Journal: Shock; 2002 May; 17(5):394-8. PubMed ID: 12022760.
    Abstract:
    We hypothesized that tumor necrosis factor-alpha (TNF-alpha) mimics endotoxin in attenuating endothelium-dependent vasodilation and smooth muscle constriction of rat renal arteries, and that tyrosine kinase is involved. Isolated rat renal arteries (n =6 per group), pretreated for 2 h by genistein (4',5,7-trihydroxyisoflavone, 10 microg/mL, a tyrosine kinase inhibitor) or vehicle, were exposed for 2 h to recombinant human (rh) TNF-alpha (100 ng/mL) or vehicle. rhTNF-alpha attenuated (P < 0.05) the constriction response to depolarizing 125 mM KCl (952.6+/-125.3 mg/mm vs. 1191.4+/-136.8 mg/mm in rhTNF-alpha-exposed and control segments, respectively), but did not affect the constriction response to norepinephrine (NE, 0.01-10 microM). Genistein did not affect the constriction response to KCl. The concentration-response relation to NE in genistein-pretreated control segments showed (P < 0.05) a rightward shift, while the maximum constriction was not affected. Genistein did not prevent a reduction (P < 0.05) by rhTNF-alpha in the maximum response to NE (721.7+/-42.4 mg/mm vs. 999.8+/-84.4 mg/mm in controls). The endothelium-dependent relaxation induced by (acetyl choline) ACh (0.001-1.0 microM) was attenuated (P < 0.05) by rhTNF-alpha (39.4%+/-6.7% and 77.4%+/-10.0% in rhTNF-alpha-exposed and control segments, respectively). The reduction (P < 0.05) in maximum ACh-induced relaxation after exposure to rhTNF-alpha was not affected by genistein (44.6%+/-3.4% and 70.8% x 2.2% in genistein-pretreated rhTNF-alpha-exposed and control segments, respectively). Hence, the attenuated endothelium-dependent relaxation and smooth muscle constriction of rat renal arteries following short-term rhTNF-alpha exposure, mimicking the effect of endotoxin, does not involve the activity of tyrosine kinase. The latter may be involved in pharmacomechanical coupling, by increasing Ca2+ sensitivity, but less in the electromechanical coupling of smooth muscle constriction.
    [Abstract] [Full Text] [Related] [New Search]