These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tetrahydrocannabinol (THC) alters synthesis and release of surfactant-related material in isolated fetal rabbit type II cells.
    Author: Cherlet T, Scott JE.
    Journal: Drug Chem Toxicol; 2002 May; 25(2):171-90. PubMed ID: 12024801.
    Abstract:
    Over the years, there has been a great deal of interest in the biological consequences of marijuana use. While evidence indicates that cannabinoids may have therapeutic uses in alleviating certain disease discomfort, there is little recent information on potential health risks, particularly related to the developing fetus. The present study was undertaken to determine the effects of delta 9-tetrahydrocannabinol (THC), the major psychoactive component in marijuana on fetal lung development specifically related to surfactant production. The rationale for the choice of this model lies in the importance of adequate lung development and surfactant production for the successful transition of the fetus to an air-breathing environment. Lung type II cells, the source of pulmonary surfactant, were isolated from fetal rabbit lungs on the 24th gestational day and incubated concurrently with various concentrations of THC and [3H]choline to label disaturated phosphatidylcholine (DSPC) the major surface-active phospholipid of surfactant. Under these conditions THC significantly reduced radiolabelling of DSPC and at the highest concentration (10(-4) M) induced release of DSPC. Pulse-chase studies were also conducted. Cells were prelabelled with [3H]choline, removed to fresh medium with THC (10(-4) M) and incubated for various time periods. Aqueous- and organic-soluble intermediates of DSPC formation were isolated. THC induced a significant increase in radiolabelling of CDPcholine, the rate-limiting conversion in DSPC synthesis. Radiolabelling of total phosphatidylcholine and DSPC was also significantly increased. Assay of CTP: cholinephosphate cytidylyltransferase which enzymatically converts cholinephosphate to CDPcholine showed that THC and phosphatidylglycerol (PG) both induced activation of the enzyme in fetal lung cytosol but not in the membranes. This effect of THC and PG was not additive. THC activated the enzyme only in fetal and not adult rabbit lung. The ability of THC to induce release of surfactant related material was also examined. In cells prelabelled with [3H]choline, THC induced release of [3H]DSPC in both cultured and freshly isolated fetal type II cells. These results suggest THC reduces formation of surfactant DSPC, probably through alterations in membrane dynamics. However, intracellular THC may actually increase formation of DSPC through an effect on the rate-limiting enzyme. THC also increases release of previously formed surfactant-related material.
    [Abstract] [Full Text] [Related] [New Search]