These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of khaya gum as a binder in a paracetamol tablet formulation. Author: Odeku OA, Itiola OA. Journal: Drug Dev Ind Pharm; 2002 Mar; 28(3):329-37. PubMed ID: 12026225. Abstract: The influence of khaya gum, a binding agent obtained from Khaya grandifolia (Meliaceae family), on the bulk, compressional, and tabletting characteristics of a paracetamol tablet formulation was studied in comparison with the effects of two standard binders: polyvinylpyrrolidone (PVP; molecular weight 40,000) and gelatin. The relative ability of khaya gum to destroy any residual microbial contamination in the binder or in the formulation during tabletting was also studied using Bacillus subtilis spores as a model. Formulations containing khaya gum exhibited more densification than formulations containing PVP and gelatin during die filling, but less densification due to rearrangement at low pressures. The mean yield pressure of the formulation particles obtained from Heckel plots, and another pressure term, also inversely related to plasticity, obtained from Kawakita plots, showed dependence on the nature and concentration of the binder, with formulations containing khaya gum exhibiting the lowest and highest values respectively. The values of the pressure terms suggest that the yield pressure relates to the onset of plastic deformation during compression, while the Kawakita pressure relates to the total amount of plastic deformation occurring during the compression process. Tablets made from formulations containing khaya gum had the lowest tensile strength values but also the lowest tendency to laminate or cap, as indicated by their lowest brittleness. All the tablets had friability values < 1% at higher concentrations of the three binders. In addition, khaya gum demonstrated a comparable ability to destroy microorganisms in the formulation during tabletting as the two binders. The characterization of the formulations suggests that khaya gum can be developed into a commercial binding agent for particular tablets.[Abstract] [Full Text] [Related] [New Search]