These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dopamine-induced inhibition of Na+-K+-ATPase activity requires integrity of actin cytoskeleton in opossum kidney cells. Author: Gomes P, Soares-da-Silva P. Journal: Acta Physiol Scand; 2002 Jun; 175(2):93-101. PubMed ID: 12028129. Abstract: The present study evaluated the importance of the association between Na+-K+-ATPase and the actin cytoskeleton on dopamine-induced inhibition of Na+-K+-ATPase activity. The approach used measures the transepithelial transport of Na+ in monolayers of opossum kidney (OK) cells, when the Na+ delivered to Na+-K+-ATPase was increased at the saturating level by amphotericin B. The maximal amphotericin B (1.0 microg mL-1) induced increase in short-circuit current (Isc) was prevented by ouabain (100 microM) or removal of apical Na+. Dopamine (1 microM) applied from the apical side significantly decreased (29 +/- 5% reduction) the amphotericin B-induced increase in Isc, this being prevented by the D1-like receptor antagonist SKF 83566 (1 microM) and the protein kinase C (PKC) inhibitor chelerythrine (1 microM). Exposure of OK cells to cytochalasin B (1 microM) or cytochalasin D (1 microM), inhibitors of actin polymerization, from both cell sides reduced by 31 +/- 4% and 36 +/- 3% the amphotericin B-induced increase in Isc and abolished the inhibitory effect of apical dopamine (1 microM), but not that of the PKC activator phorbol-12,13-dibutyrate (PDBu; 100 nM). Colchicine (1 microM) failed to alter the inhibitory effects of dopamine. The relationship between Na+-K+-ATPase and the concentration of extracellular Na+ showed a Michaelis-Menten constant (Km) of 44.1 +/- 13.7 mM and a Vmax of 49.6 +/- 4.8 microA cm-2 in control monolayers. In the presence of apical dopamine (1 microM) or cytochalasin B (1 microM) Vmax values were significantly (P < 0.05) reduced without changes in Km values. These results are the first, obtained in live cells, showing that the PKC-dependent inhibition of Na+-K+-ATPase activity by dopamine requires the integrity of the association between actin cytoskeleton and Na+-K+-ATPase.[Abstract] [Full Text] [Related] [New Search]