These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Relationship between protein kinase C alterations and nitric oxide overproduction in cirrhotic rat aortas. Author: Tazi KA, Barrière E, Moreau R, Poirel O, Lebrec D. Journal: Liver; 2002 Apr; 22(2):178-83. PubMed ID: 12028414. Abstract: BACKGROUND: Although nitric oxide (NO) overproduction and protein kinase C (PKC) alterations may play a role in systemic haemodynamic changes in cirrhotic rat aortas, the relationship between NO synthase (NOS) hyperactivation and PKC hypoactivation is unknown. Therefore, the relationships between NOS and PKC activities were studied in cirrhotic rat aortas. METHODS: The effects of NOS inhibition by Nw-nitro-L-arginine (LNNA) on the contractile response to phorbol myristate acetate (PMA), a PKC activator, were studied. The effects of NOS inhibition and those of S-nitroso-N acetyl-DL-penicillamine (SNAP), an NO donor, on PKC activity were also evaluated. The effects of PKC activation and inhibition on total NOS and inducible NOS (iNOS) activities were measured. Nitric oxide synthase inhibition caused an increase in PMA-induced contraction and an increase in PKC activity in cirrhotic rat aortas. S-nitroso-N acetyl-DL-penicillamine induced downregulation of PKC activity. Total basal aortic NOS activity was significantly higher in cirrhotic rats than in control rats and activation of PKC by PMA induced a decrease in total aortic NOS activity. Protein kinase C downregulation caused an increase in both total aortic NOS and iNOS activities only in control rats, whereas only iNOS activity increased in cirrhotic rats. CONCLUSION: In cirrhotic rat aortas, NO overproduction plays a role in the decreased PKC activation that leads to reduced aortic contraction. Overactivation of aortic NOS in cirrhotic rats may be because of, in part, the reduced PKC activity.[Abstract] [Full Text] [Related] [New Search]