These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: ElaC encodes a novel binuclear zinc phosphodiesterase.
    Author: Vogel A, Schilling O, Niecke M, Bettmer J, Meyer-Klaucke W.
    Journal: J Biol Chem; 2002 Aug 09; 277(32):29078-85. PubMed ID: 12029081.
    Abstract:
    ElaC is a widespread gene found in eubacteria, archaebacteria, and mammals with a highly conserved sequence. Two human ElaC variants were recently associated with cancer (Tavtigian, S. V., Simard, J., Teng, D. H., Abtin, V., Baumgard, M., Beck, A., Camp, N. J., Carillo, A. R., Chen, Y., Dayananth, P., Desrochers, M., Dumont, M., Farnham, J. M., Frank, D., Frye, C., Ghaffari, S., Gupte, J. S., Hu, R., Iliev, D., Janecki, T., Kort, E. N., Laity, K. E., Leavitt, A., Leblanc, G., McArthur-Morrison, J., Pederson, A., Penn, B., Peterson, K. T., Reid, J. E., Richards, S., Schroeder, M., Smith, R., Snyder, S. C., Swedlund, B., Swensen, J., Thomas, A., Tranchant, M., Woodland, A. M., Labrie, F., Skolnick, M. H., Neuhausen, S., Rommens, J., and Cannon-Albright, L. A. (2001) Nat. Genet. 27, 172-180; Yanaihara, N., Kohno, T., Takakura, S., Takei, K., Otsuka, A., Sunaga, N., Takahashi, M., Yamazaki, M., Tashiro, H., Fukuzumi, Y., Fujimori, Y., Hagiwara, K., Tanaka, T., and Yokota, J. (2001) Genomics 72, 169-179). Analysis of the primary sequence indicates homology to an arylsulfatase and predicts a metallo-beta-lactamase fold. At present, no ElaC gene product has been investigated. We cloned the Escherichia coli ElaC gene and purified the recombinant gene product. An enzymatic analysis showed that ElaC does not encode an arylsulfatase but rather encodes a phosphodiesterase that hydrolyzes bis(p-nitrophenyl)phosphate with a k(cat) of 59 s(-1) and K' of 4 mm. Kinetic analysis of the dimeric enzyme revealed positive cooperativity for the substrate bis(p-nitrophenyl)phosphate with a Hill coefficient of 1.6, whereas hydrolysis of the substrate thymidine-5'-p-nitrophenyl phosphate followed Michaelis-Menten kinetics. Furthermore, the enzyme is capable of binding two zinc or two iron ions. However, it displays phosphodiesterase activity only in the zinc form. The metal environment characterized by zinc K-edge x-ray absorption spectroscopy was modeled with two histidine residues, one carboxylate group, and 1.5 oxygen atoms. This corresponds to the coordination found in other metallo-beta-lactamase domain proteins. Phosphodiesterase activity is strongly dependent on the presence of zinc. These results identify the currently unassigned gene product ElaC to be a novel binuclear zinc phosphodiesterase.
    [Abstract] [Full Text] [Related] [New Search]