These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Optimisation of sulphate reduction in a methanol-fed thermophilic bioreactor. Author: Weijma J, Bots EA, Tandlinger G, Stams AJ, Hulshoff Pol LW, Lettinga G. Journal: Water Res; 2002 Apr; 36(7):1825-33. PubMed ID: 12044082. Abstract: Several methods were tested to optimise sulphate reduction and minimise methane formation in thermophilic (65 degrees) expanded granular sludge bed reactors fed with a medium containing sulphate and methanol. Lowering the pH from 7.5 to 6.75 resulted in a rapid decrease of methane formation and a concomitant increase in sulphate reduction. The inhibition of methane formation was irreversible on the short-term. Lowering the COD/SO4(2-) ratio (COD: chemical oxygen demand) from 6 to 0.34 (g/g) rapidly favoured sulphate reduction over methanogenesis. Continuous addition of 2 g L(-1) 2-bromoethanesulphonate was ineffective as complete inhibition of methanogenesis was obtained only for two days. Inhibition of methanogens by sulphide at pH 7.5 was only effective when the total sulphide concentration was above 1200 mg S L(-1). For practical applications, a relatively short exposure to a slightly acidic pH in combination with operating the reactor at a volumetric methanol-COD loading rate close to the maximum volumetric sulphide-COD formation rate.[Abstract] [Full Text] [Related] [New Search]