These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: pH, inhibitor, and substrate specificity studies on Escherichia coli penicillin-binding protein 5.
    Author: Stefanova ME, Davies C, Nicholas RA, Gutheil WG.
    Journal: Biochim Biophys Acta; 2002 Jun 03; 1597(2):292-300. PubMed ID: 12044907.
    Abstract:
    The recent structural determination of Escherichia coli penicillin-binding protein 5 (PBP 5) provides the opportunity for detailed structure-function studies of this enzyme. PBP 5 was investigated in terms of its stability, linear reaction kinetics, acyl-donor substrate specificity, inhibition by a number of active site-directed reagents, and pH profile. PBP 5 demonstrated linear reaction kinetics for up to several hours. Dilution of PBP 5 generally resulted in substantial loss of activity, unless BSA or a BSA derivative was added to the diluting buffer. PBP 5 did not demonstrate a significant preference against a simple set of five alpha- and epsilon-substituted L-Lys-D-Ala-D-Ala derivatives, suggesting that PBP 5 lacks specificity for the cross-linked state of cell wall substrates. Among a number of active site-directed reagents, only some thiol-directed reagents gave substantial inhibition. Notably, serine-directed reagents, organic phosphates, and simple boronic acids were ineffective as inhibitors. PBP 5 was stable over the pH range 4.6-12.3, and the k(cat)/K(m) vs. pH profile for activity against Ac(2)-L-Lys-D-Ala-D-Ala was bell-shaped, with pK(a)s at 8.2 and 11.1. This is the first complete pH profile, including both acidic and basic limbs, for a PBP-catalyzed DD-carboxypeptidase (CPase) reaction. Based on its structure, similarity to Class A beta-lactamases, and results from mutagenesis studies, the acidic and basic limbs of the pH profile of PBP 5 are assigned to Lys-47 and Lys-213, respectively. This assignment supports a role for Lys-47 as the general base for acylation and deacylation reactions.
    [Abstract] [Full Text] [Related] [New Search]