These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Treatment with soluble interleukin-15Ralpha exacerbates intracellular parasitic infection by blocking the development of memory CD8+ T cell response.
    Author: Khan IA, Moretto M, Wei XQ, Williams M, Schwartzman JD, Liew FY.
    Journal: J Exp Med; 2002 Jun 03; 195(11):1463-70. PubMed ID: 12045244.
    Abstract:
    Interferon (IFN)-gamma-producing CD8+ T cells are important for the successful resolution of the obligate intracellular parasite Toxoplasma gondii by preventing the reactivation or controlling a repeat infection. Previous reports from our laboratory have shown that exogenous interleukin (IL)-15 treatment augments the CD8+ T cell response against the parasite. However, the role of endogenous IL-15 in the proliferation of activated/memory CD8+ T cells during toxoplasma or any other infection is unknown. In this study, we treated T. gondii immune mice with soluble IL-15 receptor alpha (sIL-15Ralpha) to block the host endogenous IL-15. The treatment markedly reduced the ability of the immune animals to control a lethal infection. CD8+ T cell activities in the sIL-15Ralpha-administered mice were severely reduced as determined by IFN-gamma release and target cell lysis assays. The loss of CD8+ T cell immunity due to sIL-15Ralpha treatment was further demonstrated by adoptive transfer experiments. Naive recipients transferred with CD44(hi) activated/memory CD8+ T cells and treated with sIL-15Ralpha failed to resist a lethal T. gondii infection. Moreover, sIL-15Ralpha treatment of the recipients blocked the ability of donor CD44(hi) activated/memory CD8+ T cells to replicate in response to T. gondii challenge. To our knowledge, this is the first demonstration of the important role of host IL-15 in the development of antigen-specific memory CD8+ T cells against an intracellular infection.
    [Abstract] [Full Text] [Related] [New Search]