These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Neurogenic differentiation of murine and human adipose-derived stromal cells. Author: Safford KM, Hicok KC, Safford SD, Halvorsen YD, Wilkison WO, Gimble JM, Rice HE. Journal: Biochem Biophys Res Commun; 2002 Jun 07; 294(2):371-9. PubMed ID: 12051722. Abstract: The identification of cells capable of neuronal differentiation has great potential for cellular therapies. We examined whether murine and human adipose-derived adult stem (ADAS) cells can be induced to undergo neuronal differentiation. We isolated ADAS cells from the adipose tissue of adult BalbC mice or from human liposuction tissue and induced neuronal differentiation with valproic acid, butylated hydroxyanisole, insulin, and hydrocortisone. As early as 1-3 h after neuronal induction, the phenotype of ADAS cells changed towards neuronal morphology. Following neuronal induction, muADAS cells displayed immunocytochemical staining for GFAP, nestin and NeuN and huADAS cells displayed staining for intermediate filament M, nestin, and NeuN. Following neuronal induction of murine and human ADAS cells, Western blot analysis confirmed GFAP, nestin, and NeuN protein expression. Pretreatment with EGF and basic FGF augmented the neuronal differentiation of huADAS cells. The neuronal differentiation of stromal cells from adipose tissue has broad biological and clinical implications.[Abstract] [Full Text] [Related] [New Search]