These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The new stem cell biology. Author: Quesenberry PJ, Colvin GA, Lambert JF, Frimberger AE, Dooner MS, Mcauliffe CI, Miller C, Becker P, Badiavas E, Falanga VJ, Elfenbein G, Lum LG. Journal: Trans Am Clin Climatol Assoc; 2002; 113():182-206; discussion 206-7. PubMed ID: 12053709. Abstract: Recent studies have indicated that bone marrow stem cells are capable of generating muscle, cardiac, hepatic, renal, and bone cells. Purified hematopoietic stem cells have generated cardiac and hepatic cells and reversed disease manifestations in these tissues. Hematopoietic stem cells also alter phenotype with cell cycle transit or circadian phase. During a cytokine stimulated cell cycle transit, reversible alterations of differentiation and engraftment occur. Primitive hematopoietic stem cells express a wide variety of adhesion and cytokine receptors and respond quickly with migration and podia extensions on exposure to cytokines. These data suggest an "Open Chromatin" model of stem cell regulation in which there is a fluctuating continuum in the stem cell/progenitor cell compartments, rather than a hierarchical relationship. These observations, along with progress in using low dose treatments and tolerization approaches, suggest many new therapeutic strategies involving stem cells and the creation of a new medical specialty; stemology.[Abstract] [Full Text] [Related] [New Search]