These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Detergent modulation of electron and proton transfer reactions in bovine cytochrome c oxidase.
    Author: Tarasev M, Hill BC.
    Journal: Arch Biochem Biophys; 2002 Apr 15; 400(2):162-70. PubMed ID: 12054426.
    Abstract:
    The effect of detergents on electron and proton transfer in bovine cytochrome c oxidase was studied using steady-state and transient-state methods. Cytochrome c oxidase in lauryl maltoside has high maximal turnover (TN(max)=400 s(-1)), whereas activity is low (TN(max)=10 s(-1)) in Triton X-100. Single turnover studies of intramolecular electron transfer show similar rates in either detergent. Transient proton uptake experiments show the oxidase in lauryl maltoside consumes 1.8+/-0.3 H(+)/aa(3) during either partial reduction of the oxidase or reaction of fully reduced enzyme with O(2). However, the oxidase in Triton X-100 consumes 2.6+/-0.4 H(+)/aa(3) during partial reduction and 1.0+/-0.2 H(+)/aa(3) in the O(2) reaction. Absorption spectra recorded during turnover show that the enzyme undergoes activation in lauryl maltoside, but does not activate in Triton X-100. We propose that cytochrome c oxidase in different detergents allows access to different sites of protonation, which in turn influences steady-state activity.
    [Abstract] [Full Text] [Related] [New Search]