These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Collagen fibril formation in a wound healing model. Author: White JF, Werkmeister JA, Darby IA, Bisucci T, Birk DE, Ramshaw JA. Journal: J Struct Biol; 2002; 137(1-2):23-30. PubMed ID: 12064930. Abstract: Control of tissue composition and organization will be a key feature in the development of successful products through tissue engineering. However, the mechanism of collagen fibril formation, growth, and organization is not yet fully understood. In this study we have examined collagen fibril formation in a wound healing model in which the newly formed fibrils were kept distinct from preexisting tissue through use of a porous tubular biomaterial implant. Samples were examined after 4, 6, 14, and 28 days by light microscopy, in situ hybridization, and immunofluorescence microscopy. These showed a normal wound healing response, with significant collagen formation at 14 and 28 days. Individual collagen fibrils were isolated from these samples by gentle extraction in a gentamicin-containing buffer which allowed extraction of a large proportion of intact fibrils. Examination by transmission electron microscopy showed that approximately 80% of the intact fibrils showed a single polarity reversal, with both ends of each fibril comprising collagen amino-terminal domains; the remaining fibrils had no polarity reversal. All fibrils had similar diameters at both time points. Immunoelectron microscopy showed that all labeled fibrils contained both type I and III collagens. These data indicate that this wound healing model provides a system in which collagen fibril formation can be readily followed.[Abstract] [Full Text] [Related] [New Search]