These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Voltage- and cation-dependent inactivation of L-type Ca2+ channel currents in guinea-pig ventricular myocytes.
    Author: Findlay I.
    Journal: J Physiol; 2002 Jun 15; 541(Pt 3):731-40. PubMed ID: 12068036.
    Abstract:
    L-type Ca2+ channel currents in native ventricular myocytes inactivate according to voltage- and Ca2+-dependent processes. This study sought to examine the effect of beta-adrenergic stimulation on the contributions of voltage and Ca2+ to Ca2+ current decay. Ventricular myocytes were enzymatically isolated from guinea-pig hearts. Inward whole-cell Cd2+-sensitive L-type Ca2+ channel currents were recorded with the patch clamp technique and comparison was made between inward currents carried by Ca2+ and either Ba2+, Sr2+ or Na+. In control conditions the decay of Ca2+ currents was faster than Ba2+, Sr2+ or Na+ currents at negative voltages while at positive voltages there was no difference. The relationship between voltage and inactivation for Ca2+ currents was bell-shaped, while that for Ba2+, Sr2+, and Na+ currents was sigmoid. Thus depolarisation progressively replaced Ca2+-dependent inactivation in the fast phase of decay of Ca2+ channel currents with rapid voltage-dependent inactivation. In the presence of isoproterenol (isoprenaline) the decay of Ca2+ currents was faster than Ba2+, Sr2+ or Na+ currents at all measured voltages (-40 to +30 mV). The relationship between voltage and inactivation for Ca2+, Ba2+ and Sr2+ currents was bell-shaped, while that for Na+ currents was sigmoid with less inactivation than under control conditions. Therefore the fast phase of decay of Ca2+ channel currents was now almost entirely due to Ca2+. It is concluded that the relative contributions of Ca2+- and voltage-dependent mechanisms of inactivation of L-type Ca2+ channels in native cardiac myocytes are modulated by beta-adrenergic stimulation influencing the amount of rapid voltage-dependent inactivation.
    [Abstract] [Full Text] [Related] [New Search]