These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Decreased G-protein coupling of serotonin 5-HT(1A) receptors in the brain of 5-HT(1B) knockout mouse.
    Author: Ase AR, Sénécal J, Reader TA, Hen R, Descarries L.
    Journal: Neuropharmacology; 2002 Jun; 42(7):941-9. PubMed ID: 12069904.
    Abstract:
    The firing of central serotonin (5-hydroxytryptamine, 5-HT) neurons and their capacity to release 5-HT are subjected to a receptor-mediated auto-control via 5-HT(1A) and 5-HT(1B) receptors respectively located on the somata/dendrites (5-HT(1A) autoreceptors) and preterminal axon arborizations (5-HT(1B) autoreceptors) of these neurons. To further characterize mutual adaptations of these two receptor subtypes in the absence of one of them, activation of G-protein coupling by agonist was measured and compared to wild-type (WT) in 5-HT(1A) and 5-HT(1B) homozygous knockout (KO) mice. As expected, in WT, the non-selective 5-HT(1A/1B) receptor agonist 5-carboxyamidotryptamine (5-CT) stimulated guanosine 5'-O-(gamma-[(35)S]thio)triphosphate ([(35)S]GTP(gamma)S) incorporation in many brain regions endowed with one and/or the other receptor. In the respective KOs, no stimulation was measured in regions known to express only or mainly the deleted receptor. In the 5-HT(1A) KOs, the amplitude of G-protein activation in regions endowed with 5-HT(1B) receptors was unchanged by comparison to WT. In the 5-HT(1B) KOs, the magnitude of the 5-CT stimulation was the same as WT in all regions containing 5-HT(1A) receptors, except in the amygdala, where it was significantly lower, even if this region was one of the most strongly activated in the WT. A similar result was obtained in the amygdala of 5-HT(1B) KOs after activation by the selective 5-HT(1A) receptor agonist R-(+)8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT). Under these conditions, however, there was in addition a significant lowering of the stimulated (but not basal) [(35)S]GTP(gamma)S incorporation by comparison to WT in all regions endowed with 5-HT(1A) receptors, including the dorsal raphe nucleus. Thus, eventhough agonist radioligand binding to either 5-HT(1A) or 5-HT(1B) receptors is unchanged in the reciprocal KOs, it appears that a compensatory decrease in the efficiency of G-protein coupling to 5-HT(1A) receptors has developed in the 5-HT(1B) mutant. This could represent the first indication of a cross-talk between these two 5-HT receptor subtypes, at least in brain regions where they are co localized in the same neurons.
    [Abstract] [Full Text] [Related] [New Search]