These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dual actions of caffeine on voltage-dependent currents and intracellular calcium in taste receptor cells.
    Author: Zhao FL, Lu SG, Herness S.
    Journal: Am J Physiol Regul Integr Comp Physiol; 2002 Jul; 283(1):R115-29. PubMed ID: 12069937.
    Abstract:
    Although the numerous stimuli representing the taste quality of bitterness are known to be transduced through multiple mechanisms, recent studies have suggested an unpredicted complexity of the transduction pathways for individual bitter stimuli. To investigate this notion more thoroughly, a single prototypic bitter stimulus, caffeine, was studied by using patch-clamp and ratiometric imaging techniques on dissociated rat taste receptor cells. At behaviorally relevant concentrations, caffeine produced strong inhibition of outwardly and inwardly rectifying potassium currents. Caffeine additionally inhibited calcium current, produced a weaker inhibition of sodium current, and was without effect on chloride current. Consistent with its effects on voltage-dependent currents, caffeine caused a broadening of the action potential and an increase of the input resistance. Caffeine was an effective stimulus for elevation of intracellular calcium. This elevation was concentration dependent, independent of extracellular calcium or ryanodine, and dependent on intracellular stores as evidenced by thapsigargin treatment. These dual actions on voltage-activated ionic currents and intracellular calcium levels suggest that a single taste stimulus, caffeine, utilizes multiple transduction mechanisms.
    [Abstract] [Full Text] [Related] [New Search]