These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Retinal pigment epithelial cell DNA is damaged by exposure to benzo[a]pyrene, a constituent of cigarette smoke.
    Author: Patton WP, Routledge MN, Jones GD, Lewis SE, Archer DB, Davies RJ, Chakravarthy U.
    Journal: Exp Eye Res; 2002 Apr; 74(4):513-22. PubMed ID: 12076095.
    Abstract:
    This study examined the effect of exogenous benzo[ a ]pyrene (BaP), an important constituent of cigarette smoke, on cultured bovine retinal pigment epithelial (RPE) cells. Evidence is presented for its metabolic conversion into benzo[ a ]pyrene diol epoxide (BPDE) and the consequent formation of potentially cytotoxic nucleobase adducts in DNA. Cultured RPE cells were treated with BaP at concentrations in the range of 0-100 microM. The presence of BaP was found to cause inhibition of cell growth and replication. BaP induced the expression of a phase I drug metabolizing enzyme which was identified as cytochrome P450 1A1 (CYP 1A1) by RT-PCR and by Western blotting. Coincident with the increased expression of CYP 1A1, covalent adducts between the mutagenic metabolite BPDE and DNA could be detected within RPE cells by immunocytochemical staining. Additional support for their formation was afforded by nuclease P1 enhanced (32)P-postlabelling assays on cellular DNA. Single-cell gel electrophoresis (comet) assays showed that exposure of RPE cells to BaP rendered them markedly more susceptible to DNA damage induced by broad band UVB or blue light laser irradiation. In the case of UVB, this is consistent with the photosensitization of DNA cleavage by nucleobase adducts of BPDE. Collectively, these findings imply that BaP has a significant impact on RPE cell pathophysiology and suggest mechanisms whereby exposure to cigarette smoke might cause RPE dysfunction and cell death, thus possibly contributing to degenerative disorders of the retina.
    [Abstract] [Full Text] [Related] [New Search]