These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular and biochemical analysis of serine acetyltransferase and cysteine synthase towards sulfur metabolic engineering in plants. Author: Noji M, Saito K. Journal: Amino Acids; 2002; 22(3):231-43. PubMed ID: 12083067. Abstract: Serine acetyltransferase (SATase) and cysteine synthase (O-acetylserine (thiol)-lyase) (CSase) are committed in the final step of cysteine biosynthesis. Six cDNA clones encoding SATase have been isolated from several plants, e.g. watermelon, spinach, Chinese chive and Arabidopsis thaliana. Feedback-inhibition pattern and subcellular localization of plant SATases were evaluated. Two types of SATase that differ in their sensitivity to the feedback inhibition by L-cysteine were found in plants. In Arabidopsis, cytosolic SATase was inhibited by L-cysteine at a physiological concentration in an allosteric manner, but the plastidic and mitochondrial forms were not subjected to this feedback regulation. These results suggest that the regulation of cysteine biosynthesis through feedback inhibition may differ depending on the subcellular compartment. The allosteric domain responsible for L-cysteine inhibition was characterized, using several SATase mutants. The single change of amino acid residue, glycine-277 to cysteine, in the C-terminal region of watermelon SATase caused a significant decrease of the feedback-inhibition sensitivity of watermelon SATase. We made the transgenic Arabidopsis overexpressing point-mutated watermelon SATase gene whose product was not inhibited by L-cysteine. The contents of OAS, cysteine, and glutathione in transgenic Arabidopsis were significantly increased as compared to the wild-type Arabidopsis. Transgenic tobacco (Nicotiana tabacum) (F1) plants with enhanced CSase activities both in the cytosol and in the chloroplasts were generated by cross-fertilization of two transgenic tobacco expressing either cytosolic CSase or chloroplastic CSase. Upon fumigation with 0.1 microLL(-1) sulfur dioxide, both the cysteine and glutathione contents in leaves of F1 plants were increased significantly, but not in leaves of non-transformed control plants. These results indicated that both SATase and CSase play important roles in cysteine biosynthesis and its regulation in plants.[Abstract] [Full Text] [Related] [New Search]