These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Intrathalamic non-propagating generators of high-frequency (1000 Hz) somatosensory evoked potential (SEP) bursts recorded subcortically in man. Author: Klostermann F, Gobbele R, Buchner H, Curio G. Journal: Clin Neurophysiol; 2002 Jul; 113(7):1001-5. PubMed ID: 12088692. Abstract: OBJECTIVES: Recently, bursts of high-frequency (1000 Hz) median nerve somatosensory evoked potential (SEP) wavelets were recorded subcortically near and inside the thalamus from deep brain electrodes implanted for tremor therapy. This study aimed to clarify whether these subcortical SEP bursts reflect evoked axonal volleys running in the thalamocortical radiation or a locally restricted intrathalamic response. METHODS: During deep brain electrode implantation, median nerve SEP were recorded in 7 patients sequentially along the subcortical stereotactic trajectory at sites +20 and +10 mm above the respective target nucleus (ventral intermediate thalamus or nucleus subthalamicus). Low- and high-frequency SEP components (corner frequency 430 Hz) were analyzed separately with respect to peak latency and amplitude as they changed along the recording trajectory. RESULTS: Individual wavelets of the subcortical 1000 Hz SEP burst showed fixed peak latencies independent from the depth of the electrode penetration; they increased markedly in amplitude with decreasing distance to the thalamus. In contrast, the amplitude gradient between the two recording sites was shallower for the low-frequency SEP component, which peaked earlier at the lower recording site. CONCLUSIONS: Subcortically recorded 1000 Hz SEP wavelet bursts predominantly reflect locally restricted near-field activity, presumably generated in the somatosensory relay nucleus. In contrast, the variable peak latency of the subcortical low-frequency component could reflect postsynaptic potentials sequentially evoked during passage of the lemniscal afferences curving through the thalamus and contributions from the thalamocortical radiation.[Abstract] [Full Text] [Related] [New Search]