These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Analysis of the electron paramagnetic resonance spectrum of a radical intermediate in the coenzyme B(12)-dependent ethanolamine ammonia-lyase catalyzed reaction of S-2-aminopropanol.
    Author: Bandarian V, Reed GH.
    Journal: Biochemistry; 2002 Jul 09; 41(27):8580-8. PubMed ID: 12093274.
    Abstract:
    The structure of the steady-state radical intermediate in the deamination of S-2-aminopropanol catalyzed by ethanolamine ammonia-lyase (EAL) from Salmonella typhimurium has been probed by electron paramagnetic resonance (EPR) spectroscopy using isotopically labeled forms of the substrate and of the adenosylcobalamin cofactor. Electron spin-spin coupling between the radical, centered on the carbon skeleton of the substrate, and the low-spin Co(2+) in cob(II)alamin (B(12r)) produces a dominant splitting of the EPR signals of both the radical and the Co(2+). Analysis of the exchange and dipole-dipole contributions to the spin-spin coupling indicates that the two paramagnetic centers are separated by approximately 11 A. Experiments with (13)C- and with (2)H-labeled forms of S-2-aminopropanol show that the radical is centered on C1 of the carbon skeleton of the substrate in agreement with an earlier report [Babior, B. M., Moss, T. H., Orme-Johnson, W. H., and Beinert, H., (1974) J. Biol. Chem. 249, 4537-4544]. Experiments with perdeutero-S-2-aminopropanol and [2-(15)N]-perdeutero-S-2-aminopropanol reveal a strong hyperfine splitting from the substrate nitrogen, which indicates that the radical is the initial substrate radical created by abstraction of a hydrogen atom from C1 of S-2-aminopropanol. The strong nitrogen hyperfine splitting further indicates that the amino substituent at C2 is approximately eclipsed with respect to the half-occupied p orbital at C1. Experiments with adenosylcobalamin enriched in (15)N in the dimethylbenzimidazole moiety show that the axial base of the cofactor remains attached to the Co(2+) in a functional steady-state reaction intermediate.
    [Abstract] [Full Text] [Related] [New Search]