These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Newly designed compliant hierarchic hybrid vascular grafts wrapped with a microprocessed elastomeric film--I: Fabrication procedure and compliance matching.
    Author: Matsuda T, He H.
    Journal: Cell Transplant; 2002; 11(1):67-74. PubMed ID: 12095222.
    Abstract:
    The object of this study was to develop a compliant hybrid vascular graft minimally supported by an elastomeric scaffold for arterial replacement. The hybrid vascular grafts designed were composed of three layers: an inner surface lined with endothelial cells (ECs); a hybrid medial tissue composed of a collagenous gel embedded with smooth muscle cells (SMCs); and an outer layer made of a laser-processed micropored segmented polyurethane (SPU) film with the circular pore size (diameter 150 microm) but different film thickness (50-200 microm) and different pore-to-pore distances (1 or 4 mm). The approximate dimensions of the hybrid vascular graft without the SPU film were as follows: inner diameter, 5 mm; length, 5 cm; thickness, 50 microm. The intraluminal pressure-external diameter relationship was measured by infusion of a phosphate buffer solution into the hybrid vascular graft. Canine carotid arteries and commercially available ePTFE grafts served as controls. Decrease in the thickness of the SPU film and increase in the pore density of the SPU film increased the pressure-dependent distensibility of the hybrid vascular grafts. The thinner the film and higher the pore density, the more compliant was the hybrid graft. The pressure-induced distensibility of the designed hybrid graft was found to be close to that of native carotid arteries.
    [Abstract] [Full Text] [Related] [New Search]