These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The B cell antigen receptor regulates the transcriptional activator beta-catenin via protein kinase C-mediated inhibition of glycogen synthase kinase-3.
    Author: Christian SL, Sims PV, Gold MR.
    Journal: J Immunol; 2002 Jul 15; 169(2):758-69. PubMed ID: 12097378.
    Abstract:
    Beta-catenin is a transcriptional activator that is regulated by glycogen synthase kinase-3 (GSK-3). GSK-3 is constitutively active in unstimulated cells where it phosphorylates beta-catenin, targeting beta-catenin for rapid degradation. Receptor-induced inhibition of GSK-3 allows beta-catenin to accumulate in the cytoplasm and then translocate to the nucleus where it promotes the transcription of genes such as c-myc and cyclin D1. Wnt hormones, the best known regulators of beta-catenin, inhibit GSK-3 via the Disheveled protein. However, GSK-3 is also inhibited when it is phosphorylated by Akt, a downstream target of phosphatidylinositol 3-kinase (PI3K). We have previously shown that B cell Ag receptor (BCR) signaling leads to activation of PI3K and Akt as well as inhibition of GSK-3. Therefore, we hypothesized that BCR engagement would induce the accumulation of beta-catenin via a PI3K/Akt/GSK-3 pathway. We now show that BCR ligation causes an increase in the level of beta-catenin in the nuclear fraction of B cells as well as an increase in beta-catenin-dependent transcription. Direct inhibition of GSK-3 by LiCl also increased beta-catenin levels in B cells. This suggests that GSK-3 keeps beta-catenin levels low in unstimulated B cells and that BCR-induced inhibition of GSK-3 allows the accumulation of beta-catenin. Surprisingly, we found that the BCR-induced phosphorylation of GSK-3 on its negative regulatory sites, as well as the subsequent up-regulation of beta-catenin, was not mediated by Akt but by the phospholipase C-dependent activation of protein kinase C. Thus, the BCR regulates beta-catenin levels via a phospholipase C/protein kinase C/GSK-3 pathway.
    [Abstract] [Full Text] [Related] [New Search]