These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Novel role for prostaglandin E2 in fish hepatocytes: regulation of glucose metabolism. Author: Busby ER, Cooper GA, Mommsen TP. Journal: J Endocrinol; 2002 Jul; 174(1):137-46. PubMed ID: 12098672. Abstract: Prostaglandin E(2) (PGE(2)) potently activated glycogenolysis and gluconeogenesis in isolated rockfish (Sebastes caurinus) hepatocytes. The average degree of activation for glycogenolysis was 6.4+/-0.67-fold (mean+/-S.E.M.; n=37), and could be as much as 19-fold. Analysis of dose-concentration relationships between glycogenolytic actions and PGE(2) concentrations yielded an EC(50) around 120 nM in hepatocyte suspensions and 2 nM for hepatocytes immobilized on perifusion columns. For the activation of gluconeogenesis (1.74+/-0.14-fold; n=10), the EC(50) for suspensions was 60 nM. Intracellular targets for PGE(2) actions are adenylyl cyclase, protein kinase A and glycogen phosphorylase. Concentrations of cAMP increased with increasing concentrations of PGE(2), and peaked within 2 min of hormone application. In the presence of the phosphodiesterase inhibitor, isobutyl-3-methylxanthine, peak height was increased and peak duration extended. The protein kinase A inhibitor, Rp-cAMPS, counteracted the activation of glycogenolysis by PGE(2), implying that the adenylyl cyclase/protein kinase A pathway is the most important, if not exclusive, route of message transduction. PGE(2) activated plasma membrane adenylyl cyclase and hepatocyte glycogen phosphorylase in a dose-dependent manner. The effects were specific for PGE(2); smaller degrees of activation of glycogenolysis were noted for PGE(1), 11-deoxy PGE(1), 19-R-hydroxy-PGE(2), and prostaglandins of the A, B and Falpha-series. The selective EP(2)-receptor agonist, butaprost, was as effective as PGE(2), suggesting that rockfish liver contains prostaglandin receptors pharmacologically related to the EP(2) receptors of non-hepatic tissues of mammals. Rockfish hepatocytes quickly degraded added PGE(2) (t((1/2))=17-26 min). A similar ability to degrade PGE(2) has been noted in catfish (Ameiurus nebulosus) hepatocytes, but no glycogenolytic or gluconeogenic actions of the hormone are noted for this species. We conclude that PGE(2) is an important metabolic hormone in fish liver, with cAMP-mediated actions on glycogen and glucose metabolism, and probably other pathways regulated by cAMP and protein kinase A. The constant presence of EP(2)-like receptors is a unique feature of the fish liver, with interesting implications for function and evolution of prostaglandin receptors in vertebrates.[Abstract] [Full Text] [Related] [New Search]