These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Organization of the multifunctional enzyme type 1: interaction between N- and C-terminal domains is required for the hydratase-1/isomerase activity.
    Author: Kiema TR, Taskinen JP, Pirilä PL, Koivuranta KT, Wierenga RK, Hiltunen JK.
    Journal: Biochem J; 2002 Oct 15; 367(Pt 2):433-41. PubMed ID: 12106015.
    Abstract:
    Rat peroxisomal multifunctional enzyme type 1 (perMFE-1) is a monomeric protein of beta-oxidation. We have defined five functional domains (A, B, C, D and E) in the perMFE-1 based on comparison of the amino acid sequence with homologous proteins from databases and structural data of the hydratase-1/isomerases (H1/I) and (3 S )-hydroxyacyl-CoA dehydrogenases (HAD). Domain A (residues 1-190) comprises the H1/I fold and catalyses both 2-enoyl-CoA hydratase-1 and Delta(3)-Delta(2)-enoyl-CoA isomerase reactions. Domain B (residues 191-280) links domain A to the (3 S )-dehydrogenase region, which includes both domain C (residues 281-474) and domain D (residues 480-583). Domains C and D carry features of the dinucleotide-binding and the dimerization domains of monofunctional HADs respectively. Domain E (residues 584-722) has sequence similarity to domain D of the perMFE-1, which suggests that it has evolved via partial gene duplication. Experiments with engineered perMFE-1 variants demonstrate that the H1/I competence of domain A requires stabilizing interactions with domains D and E. The variant His-perMFE (residues 288-479)Delta, in which the domain C is deleted, is stable and has hydratase-1 activity. It is proposed that the extreme C-terminal domain E in perMFE-1 serves the following three functions: (i) participation in the folding of the N-terminus into a functionally competent H1/I fold, (ii) stabilization of the dehydrogenation domains by interaction with the domain D and (iii) the targeting of the perMFE-1 to peroxisomes via its C-terminal tripeptide.
    [Abstract] [Full Text] [Related] [New Search]