These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Proteins of peripheral myelin are associated with glycosphingolipid/cholesterol-enriched membranes. Author: Hasse B, Bosse F, Müller HW. Journal: J Neurosci Res; 2002 Jul 15; 69(2):227-32. PubMed ID: 12111804. Abstract: A characteristic feature of the vertebrate nervous system is the ensheathment of axons by myelin, a multilamellar membrane specialization produced by polarized glial cells. Although the main protein and lipid components of the myelin sheath are well characterized, relatively little is known about the mechanisms of their intracellular distribution to the respective sites of assembly within the myelin sheath. To analyze whether peripheral myelin protein trafficking is mediated by glycosphingolipid/cholesterol-enriched membranes (GEMs), we studied the association of established myelin proteins, peripheral myelin protein 22 (PMP22), protein zero (P0), plasmolipin, and myelin basic protein (MBP), with these membrane microdomains. To examine the association of the selected peripheral myelin proteins with detergent-insoluble GEMs, purified myelin from sciatic nerve of adult rat was extracted with Triton X-100 at 4 degrees C and 37 degrees C and, in additional experiments, was pretreated with the cholesterol chelator methyl-beta-cyclodextrin. The material was then centrifuged to equilibrium in sucrose gradients, and fractions were analyzed by Western blotting. Here we demonstrate for the first time that PMP22, P0, and plasmolipin prepared from purified peripheral myelin are associated with GEMs. To characterize whether the association of these proteins is a specialized feature of myelinating Schwann cells, we studied the distribution of PMP22, P0, and plasmolipin in transiently transfected HeLa cells. These experiments confirm the specific association of these proteins with GEMs in both neural and nonneural cell types.[Abstract] [Full Text] [Related] [New Search]