These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Gill-derived glands in glandulocaudine fishes (teleostei: Characidae: Glandulocaudinae).
    Author: Bushmann PJ, Burns JR, Weitzman SH.
    Journal: J Morphol; 2002 Aug; 253(2):187-95. PubMed ID: 12112132.
    Abstract:
    The Glandulocaudinae is a subfamily of neotropical characid fishes from Central and South America. A unifying feature of the subfamily is the caudal gland, found almost exclusively in males. The gland consists of tissue on the base of the caudal fin covered in part by hypertrophied scales. Scale movement as the caudal fin is flexed appears to facilitate the release of chemical compounds from the glandular tissue. We describe here a different structure, found in the gill cavity of mature males in 12 of 17 glandulocaudine genera examined. Termed a gill gland, it develops as a male secondary sex character and appears morphologically suited to release chemical signals. The gland forms by the growth of tissue over and around 4-13 anterior gill filaments on the first gill arch, forming chambers with ventral openings. Within the gland chambers, gill secondary lamellae usually shorten and may disappear. When secondary lamellae persist, simple columnar epithelial cells develop between them. In the absence of secondary lamellae, the gland chambers are lined with a simple cuboidal or columnar epithelium. Gland size and the degree of gill modification vary among species. Gill glands appear absent in five glandulocaudine genera, suggesting character reversals based on current phylogenetic hypotheses and systematic classification. Gill gland morphology suggests that this structure releases chemical compounds into the gill current. The presence of gill glands only in mature males suggests a function in reproduction and/or male aggression. Together with studies of the caudal gland, this research suggests that chemical signals may play important roles in glandulocaudine reproduction.
    [Abstract] [Full Text] [Related] [New Search]