These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Studies on glycogen autophagy: effects of phorbol myristate acetate, ionophore A23187, or phentolamine.
    Author: Kalamidas SA, Kotoulas OB, Hann AC.
    Journal: Microsc Res Tech; 2002 Jun 15; 57(6):507-11. PubMed ID: 12112433.
    Abstract:
    The effects of agents that could manipulate the lysosomal calcium such as phorbol myristate acetate, ionophore A23187, and phentolamine on the lysosomal glycogen degradation were studied by electron microscopy, morphometric analysis, and biochemical assays in newborn rat hepatocytes. Phorbol myristate acetate, which promotes the input of calcium to lysosomes, increased the total volume of autophagic vacuoles and the activity of lysosomal glycogen-hydrolyzing acid alpha 1,4 glucosidase and decreased the fractional volume of undigested glycogen inside the autophagic vacuoles and also decreased the activity of acid mannose 6-phosphatase. Ionophore A23187, which releases lysosomal calcium, produced opposite results in these enzyme activities. Phentolamine, an alpha-adrenergic blocking agent which interferes with the generation of phosphoinositides and may activate the lysosomal calcium uptake pump, increased the total volume of autophagic vacuoles and the activity of lysosomal glycogen-hydrolyzing acid glucosidase and decreased the fractional volume of undigested glycogen inside the autophagic vacuoles. The results of this study constitute evidence that changes in lysosomal calcium may influence certain aspects of autophagy, including the degradation of glycogen inside the autophagic vacuoles. They also support our previous postulate [Kalamidas and Kotoulas (2000a,b) Histol Histopathol 15:29-35, 1011-1018] that stimulation of autophagic mechanisms in newborn rat hepatocytes may be associated with acid mannose 6-phosphatase activity-deficient lysosomes.
    [Abstract] [Full Text] [Related] [New Search]